A Novel Imidazolidin-2-one Auxiliary for a Highly

Stereoselective Aldol Route to B-Hydroxyesters.

Siegfried E Drewes, Dean G S Malissar, Gregory H P Roos"

Department of Chemistry, University of Natal, Box 375, Pietermaritzburg 3200, Republic of South Africa.

(Received 11 February 1992)

Abstract: Enantiomerically pure syn-aldols are obtained from the boron enolate of (4R,5S)-1,5-dimethyl-4-cyclohexyl-3- propanoyl imidazolidin-2-one. Cleavage of the auxiliary affords the homochiral title esters in good yield.

Efficient asymmetric aldol methodology continues to be the subject of much literature.¹ We have recently reported the synthesis of highly crystalline, enantiomerically pure aldols by the utilisation of the (-)-ephedrine-derived N-acylimidazolidin-2-one (3).² However, whilst this auxiliary showed excellent selectivity (d.e. \ge 96% crude; > 99% after recryst.) with aromatic aldehydes, the results with the aliphatic counterparts were disappointing (eg: CH₃CHO d.e. 10%; ⁱPrCHO d.e.60%; cycloC₆H₁₁CHO d.e. 70%).

$$\begin{array}{cccccccc} & & & & & & \\ &$$

We report here that the solution to this problem lies in simple hydrogenation³ of the auxiliary (1)⁴ to its cyclohexyl derivative (2) (M.p. 162°C; $[\alpha]_D^{26}$ -1, c = 0.6, CHCl₃).⁵ Subsequent N-acylation afforded (4) (M.p. 99-100°C; $[\alpha]_D^{26}$ -14.2, c = 0.16, CHCl₃),⁵ use of which in appropriate boron-mediated aldol methodology⁶ has allowed the highly selective preparation of the homochiral syn-esters (6) after removal and recovery of the auxiliary⁶(Scheme). In addition, check reactions revealed no loss of selectivity in the case of the aromatic aldehyde substrates. A representative selection of results is shown in Table.⁷

Table.

Details of aldol products and derived esters.

Aldol product (isol %)	Ratio of major:others ⁸	Ester(isol %) [a] _D ²⁵ (conc.; solvent)
5a (80)	96:4	6a (70) -13.4 (0.51; CH ₃ OH) lit. ⁹ -13.5 (0.87; CH ₃ OH)
5b (82)	>99:1	6b (68) +7.6 (1.21; CHCl ₃) lit. ¹⁰ +7.7 (5.4; CHCl ₃)
5c (92)	>99:1	6c (78) -6.17 (1.1; CH ₂ Cl ₂)
5d (75)	98:2	6d (80) +23.2 (1.5; CHCl ₃) lit. ⁹ +23.2 (3.2; CHCl ₃)

Acknowledgements: The authors wish to thank the University of Natal and the Foundation for Research Development for financial support.

References and Notes:

- 1. For a recent review see: Heathcock, C.H. Aldrichimica Acta, 1990, 23, 99-111.
- Drewes, S.E.; Malissar, D.G.S.; Roos, G.H.P. Chem. Ber., 1991, in 2. print.
- 3. Via an adaptation of the method of Blum, J.; Amer, I.; Zoran, A.; Sasson, Y. Tetrahedron Lett. 1983, 24, 4139-4142 where the reaction is conducted at 5 atmos. H₂ pressure.
- 4.
- Close, W.J. J. Org. Chem., **1950**, 15, 1131-1134. Drewes, S.E.; Malissar, D.G.S.; Roos, G.H.P. **1991**, Provisional 5. patent, RSA 91/5087.
- 6. Representative experimental detail is analogous to that described in ref.2.
- 7. All new compounds were satisfactorily characterised (C,H,N; 1 H and 13 C NMR).
- 8.
- Roos, G.H.P.; Watson, M.C. S. Afr. J. Chem., **1991**, 44, 95-96. Oppolzer, W.; Blagg, J.; Rodriguez, I.; Walther, E. J. Am. Chem. Soc., **1990**, 112, 2767-2772. 9.
- 10. Evans, D.A.; Bartroli, T.R.; Shih, T.L. J. Am. Chem. Soc , 1981, 103, 2127-2129.